SpaceTEC® Resource Blog for Aerospace Technicians

Archive for August, 2011

Gage Blocks

Johnny Gage gives a “two thumbs up” when it comes to using gage blocks.

Continuing our series on measurement devices, today we are going to discuss Gage Blocks.  Gage blocks are rectangular blocks usually made of hardened steel or zirconia ceramics.  The surfaces are flattened and polished to a tolerance of only 2 to 8 millionths of an inch.

The purpose of gage blocks is to measure things to an astonishing accuracy.  Gage blocks are used to determine the accuracy of fixed gages while checking to see if those gages have experienced excess wear or any other form of alteration, calibrate various adjustable gauges, to set up machine tool settings, and to measure the accuracy of finished parts.

There are three classes of gage blocks:

  • Class AA – also known as the laboratory or master set.  They are accurate to within +/- 0.000002 in and +/- 0.00005 mm.  These gages are used in climate controlled settings to ensure the accuracy of lower class gage blocks.
  • Class A – used for inspection purposes, they are accurate to within +/- 0.000004 in and +0.00015/-0.00005 mm.
  • Class B- are commonly known as a “working set” and are used most often in shop settings for machine tool setups, layout work, and measurement.  They are accurate to +/- 0.000008 in and +0.00025/-0.00015 mm.

A typical 83 piece gage block set.

Gage block sets can come with only three or four blocks to sets that number up to 115 blocks.  The typical English gage block set consists of 83 blocks and two wear blocks.  The wear blocks can be either 0.050 in or 0.100 in.  The most common metric sets consist of 88 pieces with two 2 mm wear blocks.

Wear blocks are stacked on each end of the gage block set when measuring and are designed to take all the wear and erosion that occurs during the lifetime of measuring using the set therefore prolonging the set’s usefulness.  NEVER place a non-wear block on a work surface that you are measuring.  Work surfaces can contain minute amounts of abrasives that will degrade the accuracy of your blocks over time.  Always use wear blocks on each end of the stack, with the same face of the wear blocks touching the surfaces all the time.  Most wear blocks are marked so you not put the wrong face on the item you are measuring.

Gage blocks are designed to be used in environments that are climate controlled.  Most blocks dimensions are set in a temperature of 68 degrees F (20 degrees C).  For every increase of 1 degree F (0.5 C), a typical 4 in stack of gage blocks will expand approximately 0.000025 in.  With the human body temperature being about 98.6 degrees, it is important that not only a climate controlled facility be used when measuring, but that the aerospace technician limit his contact with the blocks either by holding them by your finger tips as little as possible or using insulated tweezers.  The work area that is being measured should also be the same temperature as the blocks in order to obtain the best accuracy.  Some manufacturers suggest you go the extra step and use insulated gloves along with the insulated tweezers.  If the part being measured and the blocks are not the same temperature, some books suggest you immerse both items in kerosene until they are equalized.  That of course may not be practical due to fire hazards or the size of the part being measured.

To save time and reduce the chance of error when using gage blocks you should use as few blocks as possible.  There is an actual procedure advocated by the authors of the book, Technology of Machine Tools, to use when calculating the exact blocks you will need to make a measurement.

Step One: Write the dimension required on a a piece of paper.

Step Two: Deduct the size of two wear blocks.

Step Three: use a block that will eliminate the right-hand digit.

Step Four: Use a block that will eliminate the right-digit and at the same time bring the digit to the left of it to a zero or a five.

Step Five: Continue to eliminate the digits from the right to the left until the dimension required is attained.

Now to see this in action, here is an example in the table below:

Source: Technology of Machine Tools

As you see in the left hand column, you are subtracting the blocks from the desired measurement while in the right hand column you are adding the block’s measurements together.  You should achieve a “0” in the left hand column and the desired measurement in the right hand column if you have done your math correctly.

The proper technique to putting gage blocks together.

Gage blocks surfaces are flattened so accurately, that they can actually “stick” together and withstand a pull of up to 200 lbs!  It is not known exactly why that is though some have suggested it is either a molecular bond or due to the slight film of oil left over due to cleaning.  To stack or “wring” gage blocks together, you must first clean the blocks with a clean, lint free, and soft cloth.  Wipe the contact surface area of the block on the palm of your hand or wrist.  This has two functions; One, to wipe any remaining particulates from the block onto your hand using the oil from your skin to “grab” the particulates, and two, also using the oil from your skin to “lube” the blocks.  Place the end of one block onto the end of the other block and while using pressure, slide the blocks together.  They should stick together.  If they don’t, then the blocks were not properly cleaned.

To take care of your gage blocks and ensure that they have a long life, you should:

  • Keep the case closed at all times except when you are getting a block or placing back a cleaned block.
  • Do not play dominoes with them.
  • Do not unnecessarily finger the surfaces of the block to avoid rusting and tarnishing due to your skin oils and moisture.
  • Do not drop the blocks or scratch the surfaces of the blocks.
  • Do not use them in your juggling act at the comedy club.
  • Immediately after use, each block should be cleaned, oiled, and placed back into the box.  (Don’t forget to close the box!)
  • Never leave your gage blocks wrung together!  Leaving them this way will encourage rusting from the oils and moisture from your skin.


The Quality Technician’s Handbook (Griffith, 2003)

Technology of Machine Tools (Krar & Check, 1997)



Tags: , , , ,

Wednesday, August 24th, 2011 Applied Mechanics, Tests and Measurements Comments Off on Gage Blocks

The Lowly Steel Rule


The most common and overlooked measuring tool is the steel rule or ruler.  Steel rules can be in inches or metric with sub-markings as precise as 1/64 of an inch or one millimeter.  Steel Rules come in 4 types:  spring tempered, flexible, narrow, hook, and short-length rules.

Sprint Tempered Steel Rule

Spring tempered steel rules are the most commonly used in aerospace shops.  These rules are usually 6 inches in length and made for quick reading.  Usually they are broken into 4 scales, two on each side.  For English measurements, one side of the rule will have graduations in eighths and sixteenths, and the back is graduated in thirty-seconds and sixty-fourths.  Some spring tempered rules will have English measurements on one side and metric on the other.


Flexible Steel Rule

Flexible steel rules are more commonly found in construction and in the home.  They are also commonly called tape measures.


Narrow Steel Rule

Narrow steel rules are used to reach tight and hard to access places to measure.


Hook Steel Rule

Hook steel rules have a “hook” on the end that you can butt up flat against a corner or protrusion while measuring to ensure the rule doesn’t move.


Short-length steel rules with holder.

Short-length rules are small rules that come in sets of four and range in size from 1/4 inch to 1 inch in length.  These rules are placed in a holder and used to measure small parts or openings.

There are two major rules to follow when using steel rules to ensure accuracy:

Credit Autospeed

1. Due to rules being worn on the edge over time and use, it is best to start your measurement from the 1 inch or 1 centimeter mark.  Once you have your measurement, subtract the 1 unit you started at to get the final measurement.

2. Make sure the graduated markings are as close to the area of the part you are measuring to ensure accuracy.  It is best if the graduated markings are actually touching the area your measuring to make it easier to obtain the correct measurement.

Credit Autospeed

Steel rules can also be used to determine the flatness of a material.  Lay the steel rule on it’s edge on a part, hold the rule and part up to a light.  If light shows through between the part and the rule, then the part is not flat.  If there is no light showing, then the part is flat.

Don’t underestimate the usefulness of the steel rule.  It will be the most often used measuring tool in your tool box.


The Quality Technician’s Handbook (Griffith, 2003)

Technology of Machine Tools (Krar & Check, 1997)




Tags: , ,